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Abstract

We will derive the fundamental generalized displacement solution, using the Radon transform, and present the direct
formulation of the time-harmonic boundary element method (BEM) for the two-dimensional general piezoelectric sol-
ids. The fundamental solution consists of the static singular and the dynamics regular parts; the former, evaluated ana-
lytically, is the fundamental solution for the static problem and the latter is given by a line integral along the unit circle.
The static BEM is a component of the time-harmonic BEM, which is formulated following the physical interpretation
of Somigliana’s identity in terms of the fundamental generalized line force and dislocation solutions obtained through
the Stroh—Lekhnitskii (SL) formalism. The time-harmonic BEM is obtained by adding the boundary integrals for the
dynamic regular part which, from the original double integral representation over the boundary element and the unit
circle, are reduced to simple line integrals along the unit circle.

The BEM will be applied to the determination of the eigen frequencies of piezoelectric resonators. The eigenvalue prob-
lem deals with full non-symmetric complex-valued matrices whose components depend non-linearly on the frequency. A
comparative study will be made of non-linear eigenvalue solvers: QZ algorithm and the implicitly restarted Arnoldi
method (IRAM). The FEM results whose accuracy is well established serve as the basis of the comparison. It is found that
the IRAM is faster and has more control over the solution procedure than the QZ algorithm. The use of the time-harmonic
fundamental solution provides a clean boundary only formulation of the BEM and, when applied to the eigenvalue prob-
lems with IRAM, provides eigen frequencies accurate enough to be used for industrial applications. It supersedes the dual
reciprocity BEM and challenges to replace the FEM designed for the eigenvalue problems for piezoelectricity.
© 2004 Elsevier Ltd. All rights reserved.

Keywords: Piezoelectricity; 2-D time-harmonic dynamic problems; Direct formulation of boundary element method; Radon transform;
Non-linear eigenvalue analysis by IRAM

* Corresponding author. Tel.: +1 732 4454391; fax: +1 732 4453124.
E-mail address: denda@jove.rutgers.edu (M. Denda).

0020-7683/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2004.06.052


mailto:denda@jove.rutgers.edu 

7242 M. Denda et al. | International Journal of Solids and Structures 41 (2004) 7241-7265
1. Introduction

The time-harmonic boundary element method (BEM) in two-dimensions for the general piezoelectric
solids is proposed in this paper. We will derive the fundamental solutions, formulate the direct BEM for
the time-harmonic problems and apply it to the eigenvalue analysis. The motivation comes from the
FEM (Wang et al., 1999) that faces the stiff computing requirements in the eigenvalue analysis of piezo-
electric resonators. While the FEM must discretize the whole domain, the BEM models only the boundary
and has the potential of reducing the computational burden of the FEM drastically. However, the BEM
requires the fundamental displacement and traction solutions. For isotropic solids Kitahara (1985) has for-
mulated the time-harmonic BEM for plates and 2-D elasticity problems using the time-harmonic funda-
mental solutions. For general anisotropic solids, Denda et al. (2003) have formulated the time-harmonic
BEM in 2-D using the fundamental solutions obtained by Wang and Achenbach (1994). We will derive
the 2-D time-harmonic fundamental solutions for piezoelectric solids using Radon transform and formulate
the direct BEM. Norris (1994) also obtained the time-harmonic fundamental solution for piezoelectric (and
anisotropic) solids without using Radon transform. The dual reciprocity boundary element method
(DRBEM) of Nardini and Brebbia (1982) that uses much simpler static fundamental solution in the
time-harmonic BEM and reduces the resulting volume integrals into boundary integrals does not provide
accurate eigen frequency solutions (Kamiya et al., 1993) in higher frequency range as required in recent
industry applications.

The fundamental solution for the general piezoelectric solids, as for the general anisotropic solids (Wang
and Achenbach, 1994), can be split into static singular and dynamic regular parts; the former is given ana-
lytically and the latter is calculated numerically by the line integral along the unit circle. The former, being
the fundamental solution of the static problem, results in the static BEM used either on its own for static
problems or as a component of the time-harmonic BEM. In the formulation of the static BEM, following
the physical interpretation of Somigliana’s identity (Denda and Lua, 1999), we use the generalized line force
and the generalized line dislocation solutions, which are obtained through the Stroh—Lekhnitskii (SL) for-
malism (Stroh, 1958; Lekhnitskii, 1963). We complete the formulation of the time-harmonic BEM by add-
ing the boundary integrals for the dynamic regular part, which originally are double integrals: one over the
unit semi-circle followed by another over the boundary element. The integrands of the double integrals are
amenable to analytical evaluation over the boundary if performed before the integration over the unit cir-
cle. This is the trick we apply to reduce the double integrals to simple line integrals over the unit circle; the
regularity of the integrands justifies this exchange operation.

Among a broad range of the time-harmonic BEM applications, we select the eigenvalue analysis. The
resulting eigenvalue problem must deal with a full non-symmetric complex-valued matrix; each component
depends non-linearly on the frequency. Kitahara (1985) used the direct (eigenvalue search) method to plot
the variation of the determinant value as a function of the frequency. For solids of general anisotropy,
Denda et al. (2003) divided the given frequency interval into sub-intervals and, for each sub-interval,
approximated the components of the non-linear matrix by polynomials in the frequency to reduce the
non-linear eigenvalue problem to the generalized linear eigenvalue problem to be solved by the QZ algo-
rithm (Moler and Stewart, 1973). Although the accuracy of the QZ algorithm is superior, it is slow since
the number of spurious eigen values rejected is high. The typical ratio of the numbers of non-spurious (ac-
cepted) and spurious (rejected) eigenvalues is 1 to NM, where N is the number of degrees of freedom of the
problem and M (typically 1) is the order of polynomial approximation for the non-linear matrix in a given
frequency interval.

The implicitly restarted Arnoldi method (IRAM) (Lehoucq et al., 1998), eliminating this waste, provides
an accurate and dramatically faster eigen solver than the QZ algorithm. First, we will make a comparative
study of these two non-linear eigenvalue solvers, while the FEM results whose accuracy is well established
serve as the basis of the comparison. Although the eigen frequencies sought in the sub-interval of frequency
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are real-valued, the IRAM produces spurious eigen frequencies which have the large imaginary part or the
real part outside the sub-interval. Even for the legitimate eigen frequency, its imaginary part may not be
perfectly zero due to the error introduced by the polynomial approximation and by the boundary element
discretization. Hence, after solving the linear eigenvalue problem, a procedure to select the eigenvalues with
the imaginary part less than a specified tolerance and the real part within the sub-interval is required. Use of
a tight tolerance for the imaginary part and a very small sub-interval size will satisfy the accuracy require-
ments well into the higher frequency range. We will perform a series of numerical experiments with the
piezoelectric solid in 2-D to assess the optimum tolerance size for the imaginary part, the sub-interval size,
and the boundary element mesh for the required level of accuracy of the eigen frequency.

The proposed BEM implementation combined with the non-linear eigenvalue solver IRAM provides a
reliable platform for the computation of eigen frequencies for the general piezoelectric solids. The use of the
time-harmonic fundamental solution provides a clean boundary only formulation of the BEM. It super-
sedes the double reciprocity BEM (DRBEM) and challenges to replace the FEM designed for the eigen-
value analysis. More important, the proposed BEM is generally applicable to a wider class of
two-dimensional piezoelectric time-harmonic problems not limited to the eigenvalue analysis.

2. Time-harmonic piezoelectricity in 2-D
2.1. Basic equations

Consider the two-dimensional elastodynamic problem in piezoelectric solid, where the field quantities
depend only on the coordinates x; and x,. Let x and ¢ indicate the two-dimensional position vector
(x1,x,) and time, respectively. Under the electrostatic approximation, the equations of motion and the
Gauss’s law in terms of the displacement u;, the electric potential ¢, the body force f;, mass density p,
and the charge density p, are given by

Cinjplhj g + €pin P po — Pa[zui = —fi (1)

CojpUjpo — Kap® gy = Pes (2)

where the ¢;;,,, e;x and k; are the elastic stiffness, the piezoelectric stress and the dielectric permittivity con-
stants, respectively. The Greek and lowercase Roman subscripts range from 1 to 2 and 1 to 3, respectively;
a repeated index is summed over its full range. We denote the derivative with respect to x, of a function #
by & , or 0,7, while its time derivative by 0,7 . If we introduce

uy (J: 1,2,3),
UJ =
@ (‘]:4)a
Crajp (17‘]: 17273)3
P ep,  (J=4,1=1,2,3),
e (I=4,J=1,23),
(

1=J=4),

em]/;

—Kup

p (I=J=123),
p. =
YTlo U=d=4do0rl#J),
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FJ:{fJ V=123,

—Pe (J = 4)7
then we can combine (1) and (2) to get the generalized equations of motions
EnpUs g — pyQ; Uy = =Fy, (3)

where U; and F; are the generalized displacement and body force. Note that the uppercase Roman indices
range from 1 to 4. Introduce the generalized stress and traction

J=1,23),
zm,:{"” ( )

Da (J:4)7
T, = 1y (J: 17273)1 (4)
T { — W, (J = 4)a

where o,; and D, are the stress and electric induction components, respectively, with ¢; and w, being the
traction component and the surface charge density, respectively. They are related by

Ty = 0,25 = 0,EpgUppg, (5)

where v, is the unit normal component.
Consider an infinite piezoelectric solid subjected, at the origin and at time # = —oo, to a time-harmonic
generalized line force in the xg-direction given by

Fi(x,1) = dd(x)e ™, (6)
where i = vV —1, 0;x 1s Kronecker delta and w is the angular frequency. The resulting generalized displace-
ment is in steady state motion and written as

l][]((X7 t) = G]]((X7 w)e_i‘“’, (7)
where Gx(x,w) is the fundamental solution with the physical interpretations:

G (x,w) Elastic displacement in the x-direction at x and ¢ due to a line force in the x;-direction at the
origin;
G4 (x,w) Elastic displacement in the x;-direction at x and ¢ due to a line charge at the origin;

G4 (x, ) Electric potential at x and ¢ due to a line force in the x;-direction at the origin; and
G44(Xx,w) Electric potential at x and ¢ due to a line charge at the origin.

Substitute (6) and (7) into (3) and omit the time factor e '’ to get
{Fy(01,0) + pyo*}G(x,0) = f — dud(x), (8)

where
I';;(01,0,) = E,y50,0;. 9)

The basis of the direct formulation of the boundary element method for time-harmonic dynamic piezo-
electricity is the generalized Somigliana’s identity

Uk(x,m) = /aA T(x,0)Gi(y —x,w)dl(y) — /aA U(x,0)H i (y — x, w;v)dI(y), (10)

where Hx(y — X, w;v) is Ith component the generalized traction at y corresponding to the generalized line
force in the xg-direction at x and given by
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Hi(y —x,0;v) = Ua(Y)EaIP/fGPK/f(y - X, ), (11)

where v,(y) is the unit normal component on the boundary 04.
2.2. Fundamental solutions by radon transform

The Radon transform of an arbitrary function f(x) is defined (Wang and Achenbach, 1994) as
Flom = [ 7(x03(s.n- ),

which is an integration of f(x) along a line n-x = s, defined by a unit vector n = (n,n,) and a scalar s,
in two-dimensions. The inverse Radon transform is defined by

f(X) = ](n ) X?“)dn> (12)

n|=1

- 1 [>0,f(a,
f(s’n):w/,x %da.

The integral in (12) is a line integral over a unit circle.
Apply the Radon transform to (8) to get

{FU(“)Qz + P/sz}a./K(Xv ) = —6x0(s), (13)
which consists of four groups of equations

[ (m)°G i + ()2 Gy + par* Gy = —840(s), (14)

TGy + Tiy(0)2Gay + pr Gy = 0, (15)

F4j(n)6§a’jk + F44(n)6§a’4k = 0, (16)

403 Gja + Taa ()3 Gas = —6(s), (17)
where

F]_](ll) = E]m/[gl/lzl’l/;. (18)

We recall that the lowercase Roman indices /, j and k range from 1 to 3. R
Use (16) to eliminate Gy in (14) to get a system of ordinary differential equations involving only G,
Ly(n)32 Gy + p* Gy = —33(s), (19)
where
I'iy(n)I'y;(n)
F44(Il)

is symmetric and positive definite. We follow Wang and Achenbach (1994) for the derivation of G e from
(19); definitions and equations used in the derivation are
(A) Eigen equations for the matrix L;(n)

Lim)Vy = 2AuViw (m=1,2,3; no sum on m), (21)

Lij(n) = Ly(m,n2) = I';;(n) — (20)

where /,, and V;, are the eigenvalues and eigenvectors of the matrix L;(n).
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(B) Adjoint matrix

E% = adj[Ly(n) — 4,0] (m=1,2,3). (22)
(C) The phase velocity v,, and wave number k,,

2 w
m = A — k= — =1,2,3). 23
=y 2 m=1.2.3) (23)

Notice that other components, fhk and (A}44, of the fundamentalAsolution are given in terms of G & through
(16) and (17). After applying the inverse Radon transform to G, we get the fundamental solution Gk,
which can be expressed by a sum of static singular part GEK and dynamic regular part GI}K as

G (x,) = G (x) + G (x, ). (24)

2.2.1. Static singular part
Define the adjoint and determinant of 4 x 4 matrix I'jx(1,n)

Fuc(n) = adj[Lic(1,n)], D(n) = det[I'k(1,1)]. (25)
Then, the static singular part in (24) is given by
G (x) = G (x) + C (26)
with
1 o~ Fux(ny)
45 (x) ==3 ML og(z, 27
JK( ) - Mz::l anD(V’M) (M) ( )
and
1 4 FJK(WM)
Cix=—-3 log(n,, + 1), 28
JK - A; 3,D(1y,) gy +10) (28)
where
Iy = X1 +7]Mx2 (M: 1727374)7 (29)

are generalized complex variables and n;, (M =1,2,3,4 with 3(#,,) > 0) are four distinct roots of the
eighth-order characteristic polynomial

D(n) =0, (30)

which has four conjugate pairs of roots (1,,,,,). The symbol J indicates the imaginary part of a complex
variable. Without loss of generality, we assume four distinct roots in this paper. The static singular part
Gf,((x) in the left-hand side of (26) is the static fundamental solution obtained by Wang (1996). Note that
%> (x) differs from G5 (x) by the constant term C,x. These constants are inessential in the formulation of
the elastostatic BEM, but they are required for the time-harmonic dynamic BEM.

2.2.2. Dynamic regular part
The dynamic regular part in (24) is given by

GR(x, ) = / G (n- X, n)dn, (31)

In|=1
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where
Gy (n-x,n) =32 Z (?K,,, (ki m - x[) (32)
L= pcE,
with
E" JK=123,
gno— ) =SS J=1,23K=4 (33)
Pl —K =4

44

and the case K=1,2,3 and J =4 is covered by the symmetry property &7, = &%,. Note that the indices i,
p and ¢ in (33) are summed over 1 to 3. The function ¢*(k,,|n-x|) is defined by

¢R(km|n'x|) = (l’)(km|n'x‘) +210g|n-x| (34)
with
$({) = ine® — 2[cos()ci({) + sin({)si(L)], (35)

where ci({) and si({) are the sine and cosine integral functions; the logarithmic function in the right hand
side of (34) is added to cancel the singularity of ¢ (k,,|n-x|) at the origin. Without loss of generality, we
assume three distinct ¢, in (32); special formulas for coincident cases are provided by Wang and Achenbach
(1994).

Substitute (31) into (5) to get the corresponding generalized traction contribution of the dynamic regular
part, given by

HY (x,0;v) = / 1H§K(n -x,m;v),dn, (36)
where

—Rr 1 ) 3 1 g*m

H,(n -x,nv)=— . — 2K Rk, n - 37

JK(n X, n; V) 87'[2 Slgn(n X) mz:; pcﬁl Ezzq ( |I] X|) ( )

with

Ex = VrErxs V= VaLwrphip, (38)
and the prime attached to the function such as

O~ (kI - X|) = kpyo' (k|n - x|) + 2l0g'(In - X)), (39)

indicates the derivative with respect to its argument. Repeated indices R and o and f in (38) should be
summed over the ranges 1 to 4 and 1 to 2, respectively.

3. Static piezoelectricity in 2-D

In the formulation of the static BEM, following the physical interpretation of Somigliana’s identity
(Denda and Lua, 1999), we will use the displacement solutions for the generalized line force and the gen-
eralized dislocation dipoles; the generalized Stroh formalism provides the framework for their derivation.
In the generalized Stroh formalism for 2-D piezoelectricity the generalized displacement U; and force result-
ant R; are given in the form
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U= 29{{24:/11]]()(@)}, R = —25R{Z4:LIJfJ(ZJ)}v (40)

J=1 J=1

where A;; and Lj; are the components of 4 x 4 complex valued matrices L and A defined later by Eq. (44)—
(47). Each of four functions f;(z,;), (J = 1,2,...,4) is analytic in its argument z; = x| + 5 x,. Here 5, are
four distinct complex numbers which, along with their four conjugates, are the roots of the eighth-order
polynomial characteristic equations in #,

d¥ (n)d® ()£ (n) + d¥ (n)e® (n)e (n) — d (n)d™ (n) £ (n) — 24 (n)e (n)e® ()
+d?(m)e® (n)e® () = 0, (41)

where
d¥(n) = Sun* — 2816 + (2812 + Ses ) — 28261 + Sz,
d® () = Sisn® — (S1a + Sse)” + (Sas + Sas)n — Saa,
e (n) = Gur’ = (G + Gie)n* + (Gi2 + Gag)yp — Ga,
d? (n) = Sssn* — 284sn + Sua,
e?(n) = Gisi® = (Gia + Gas)n + G,

f(2>(’7) = BIIVI2 — 2Bon + Bo.

The coefficients S 4., G, and B, are reduced elastic compliance, reduced piezoelectric strain and
reduced dielectric impermeability constants, respectively, given by

Su3Sa3Pay + (838 + S4383.1)833 — &3.483.4°533
2
s33f33 + 833

Suv=Sux — )

S 138,333 + (=33 + 83.48,3)83 + &34 Pr3533
53333 + &3 7 (43)
2385383 — (&aBp + &p3B3)83 — BoaBpasas
s33f3; + &3
('ﬂv/‘/ = 172747576;a7ﬂ = 172)

Gowt = 8ot —

By/g - ﬁacﬂ +

)

in terms of the elastic compliance (s, with .#, /" =1,2,3,4,5,6), piezoelectric strain (g; , with i = 1,2,3

and .4 =1,2,3,4,5,6) and dielectric impermeability (f; with i,k = 1,2,3) constants, respectively. Notice

that, for the elastic compliance and the piezoelectric strain constants, each pair of suffices ij is replaced

by one suffix following the convention (11 — 1), (22 — 2), (33 — 3), (23 — 4), (31 — 5) and (12 — 6).
The 4 x 4 matrix L is defined by

=MLy —mlyn  —n3l3Llsz —nylilas
Ly Lo [3L33 l[7L44
L= [L17L27L37L4] = ) (44)
L1 Ly L) L33 I3Las

l4Lo; 5Ly l6L33 Ly
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where
LAY e, [P+ eVe )
* [d<2)f(2> +e@e@](y,) (x=1,2) 3= [d(‘”f(z) + e<3)e(3>](173)’
€@d® — d@eB](y,) [d@e® — d®e®](n,)
Iy = @) £ 2)al2 (B=4502=12) le = @ re 3)a(3 Rt (45)
(£ + e@e](n,) [/ + el ()
l [d@e® — d®e@](n,) l [d®e® — d9e@](n,)
7 [d(4)d(2) d(3)d<3>)](174) 8§ = [d(4)d(2) _ d(3)d<3)](n4)
and the 4 X 4 matrix A by
A = [\ Ly, oLy, o3, oA 4L, (46)

where

S —Sumy, Sz, Su—Si5My, G — Guny
Sa6 — Sa1lyy % Sa4 — Sashyy Gn — Gy,

oAy = Me My My Uy . (47)
Ss6 — Ssiflyr,  Ss2,  Ssq — Ssshyys Gas — Gisiy,

Gis — Guty, G, G — Gisny, —Bip+Buny

The two matrices are normalized by the relation

4
2 LA =1 (M =1,2,3,4). (48)
I=1
Consider a unit Kth component of the generalized line force at the origin; the resulting Jth component of
the generalized displacement %5, (z) is given by

gEK( Z AmAxa log(zyr), (49)

where z = x; + ix, and z,, = x; + 173,x>. Next consider a unit Kth component of the generalized dislocation

dipole at the origin along a segment d¢ = dy; + idy, of length ds, which is a segment of the generalized dis-
. S R . . (d) . .

placement discontinuity; the resulting Jth component of the generalized displacement G (z) ds is given by

d
Gyl (z)ds = ZAJMLKM éM (50)

where dé,, = dy; + n,,dy,. Formulas (49) and (27) provide two alternative and equivalent expressions for
the static generalized displacement fundamental solution, while formula (50) coincides with the minus of
the static generalized traction fundamental solution of the generalized line force.

4. Direct formulation of the BEM

As the time-harmonic fundamental solution is split into static singular and dynamic regular parts, so is
the numerical implementation of the boundary elements: the static singular boundary element (SSBE) and
the dynamic regular boundary element (DRBE) implementations. While the SSBE alone can solve static
problems, the time-harmonic BEM requires both components.



7250 M. Denda et al. | International Journal of Solids and Structures 41 (2004) 7241-7265
4.1. Static singular boundary element

The kernel functions Hg in the generalized Somigliana’s identity (10) has two interpretations (Denda
and Lua, 1999): (1) the generalized traction due to the generalized line force and (2) the generalized dis-
placement due to the generalized dislocation dipole. The second definitions leads to the physical interpre-
tation of the generalized Somigliana’s identity: the generalized displacement field in a domain A4 can be
represented by continuous distributions of the generalized line forces (F;) and dislocation dipoles (U;) along
the contour 04 in an infinite body that coincides with the boundary of the domain, where F; and U; are the
magnitudes of the generalized traction and displacement on the boundary. Stroh—Lekhnitskii formalism
provides an ideal platform for the derivation of the generalized line force and dislocation solutions; it uses
four generalized complex variables z,, = x1 + 100 (M = 1,2, 3,4) based on the coordinates (xy, x») and the
four roots n,, of the characteristic polynomial (41).

We approximate the whole boundary by a collection of straight elements ) .. Consider a boundary ele-
ment I" of length L with the end (1,2) and the middle three nodes; introduce four generalized complex var-
iables &=y + nar v (M =1,2,3,4) based on the coordinates (y1,),) of the source point on the element.
Approximate the generalized displacement and traction on the boundary by quadratic interpolation
functions:

3 3

Us(Cu) = Z@a(éM)Ujv Ti(u) = Zqoa(éM)ij (51)

a=1 a=1

where ¢,(¢y) (@ = 1,2,3) are the quadratic shape functions and U5 and T are the nodal values of U, and T
The shape functions are given by

(& — &) (& — &)

Pular) = (& =& —&)

(a=1,2,3and b # ¢ # a), (52)

where &}, (a =1,2,3) are nodal values of the generalized complex variables ¢,,; no summation is taken
over the repeated indices. The pth derivative, with respect to &,,, of the interpolation functions (51) are
given by

3 3
UY ) =Y oP(EUs TV E) =S 0P (E)TS, (53)
a=1 a=1

where qoj(\’;)(éM) is the pth derivative of the shape function with respect to &,,.

The generalized displacement contribution (U;) from the single boundary element I' consists of two
parts: the generalized boundary displacement (U}) and traction (U]) contributions, which are added.
For the straight element with the quadratic interpolation, each contribution can be evaluated analytically
as given by

Ul

Iy
9-3

a=1

3

(54)
Uy

-

1

~
Il
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with

>
7171 —
. (55)
1
UZH(Z) = 29{{2—7_” ZAIMLJM%AZIJ(ZM>}7
M=1
and
1 3 2,
gy Ta _ _1)4-1 (d—1) [d] _
ZlM( M) COSQ’) +pM Sind) ;( 1) |:q)a (EM)ln (ZM fM) Lk,,’
(56)

&

2
U (z Iz — &)
) = >0 gl Gt e = &)
where ¢ is the slope of the element I and I (z,, — & m) 1s the dth integral of In(z;, — &,,) with respect to
the argument &,; and is given by

ln[d](zM — fM) = (_l)ddi(zM — ﬁM) {IH(ZM — rfM Z

j=1

} d > 0). (57)

|

When d is a negative integer In/)(z,,—¢,,) is interpreted as the derivative instead of the integral so that

: "2z — &) = - 5. (58)

zm — &y’ (zm — Eur)

lnH](ZM - éM) = -

Let image of I' in the &, plane be I',;; we select the branch cut for In(z;; — &,/) to be a straight line ema-
nating from &,, (the branch point) and extending indefinitely toward f}w (the first end point of I'y,).

4.2. Dynamic regular boundary element

The DRBEM uses the same discretization scheme as the SSBEM: linear element and quadratic interpo-
lation, except we use the quadratic shape functions of the arc length variable 0 < / < L given by

2 L 2 L 4
=7 (1-5) =00 v =5(1-5)n w0 =-510-1) (59)
and their dth derivatives ¥ (1) with respect to /.

Denote the integral along the unit circle for the fundamental solutions as n-integral and the boundary
integrals of the Somigliana’s identity (10) as /-integral. The substitution of (dynamic regular part of) the
fundamental generalized displacement and traction solutions, (31) and (36), into (10) results in a double
integral representation of Somigliana’s identity

Ug(x,0) = /aA TJ(y,w){/IEJRK(n- (y—X),n)dn}dl(y)

— /aA U,(y, w){ - ﬁJRK(n Sy — x),n;v)dn}dl(y). (60)
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Swap the order of integration in (60) to get

Umxm=AH{an@m%mw—wmww@m

- /n1 {/M U,(y, w)ﬁiK(n- (y — x),m; v)dl(y)}dn. (61)

Approximate the boundary 04 in (61) with straight boundary elements and consider two /-integrals over an
element I

/n@@ﬁ%mw—mmmw,
] (62)

mewmmm@—m@www

Ix(x-n,n ) =
Jx(x-n,n,m) =

Analytical evaluation of these integrals is given by

4

3
Ix(x-n,n,0) = Z Zin(x -n,n, )79,
a:31 J:41 (63)
Jx(x-n,n,m) = Z Z_jK(x-n,n,w)Uj,
a=1 J=1
with
3 oM
I (x-nno0) = % Z Lz éﬁ( JM(X-n,n,m),
8 =1 PCn qu
(64)
J (x-n,n w):ii: L S (X -m,n,m)
7K T 872 £~ pc2 Ep 7 ¢ T
and
Loy $(2,) -
Sr(xnnm) ==Y <—> [lﬁid”(l){if;”r ZIHM(C)H ;
a=1 \Call (km) =0
_ (65)
sonmoy =3 (21 oo {#06) apien}]
j:lx'nvnv = (_) la { +2n }] .
@ d=1 Cally (km) 1=0
Here ¢(¢,,) and In'({) are the dth integrals of ¢ ((,,) and In() given by
¢ (L) = ime™n = 2[cos({,)ci(C,) + sin(L,,)si(C)],
- ﬂfe [SIH(C (Cm - Cos(gm)Si(Cm)]? (66)
si

(Cn) = )ci(Cn)
dP(¢,) = —ine™ + 2[cos(,)ci(Cn) 4 sin(C,)si(Cn)] — 210 [E,],
(Cw) = —me" + 2[sin(C,)ci () — c08(G)si ()] — 28, [ [C,| — 1]
and
ln[d](é) — C_d {ln = i 1} (67)
d! =

in terms of the arguments
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Table 1
Reference values for material constants and field variables in piezoelectricity
Displacement 1o = Xoeo = 1073x, (m) Elec. potential $o = xoEy = 10"x, (V)
Stiffness co =22 = 10" (N/m?) Permittivity € = EO =107 (C/(mV))
€0 0
E Q
Compliance sp = Z_—o =107 (m?/N) Impermeability Bo = D—O =10° (mV/C)
0 o
. . . . E
Piezoelectric e = ? = 10" (N/(mV)) Piezoelectric g = J—O =10"" (mV/N)
0 0
D .
Stress constant ==2=10" (C/m?) Strain constant = ;_0 =10"" (m?*/C)
€0 0
G =kl C=np(yvp —xp) = np{ (vgl,=o + leg) — x4}, (68)

where eg is the unit vector along the boundary element I'.
The generalized displacement contribution from a single boundary element is finally given in a form

uR (X, 0) = / Tx(x-n,n,w)dn —/ Jg(x-n,n, )dn, (69)
In|=1 [n|=1

involving single integrals over a unit circle, which can be reduced to a half-circle integration exploiting a

two-fold symmetry of the integrands. A remarkable advantage of the proposed time-harmonic boundary

element is that the burden of numerical integration remains comparable to that for the standard static

BEM involving quadrature integration over the element.

4.3. Normalization

The order of magnitudes of the material constants and the corresponding field variables in piezoelectric-
ity has a wide spectrum. For example, the elastic stiffness, the piezoelectric stress and the dielectric permit-
tivity constants are of the order of 10'! (N/m?), 10' (C/m?) and 10~° (C/(mV)), respectively, and the strain
and the electric fields are of the order of 10~ and 107 (V/m), respectively. The normalization of these con-
stants and variables is essential to avoid truncation errors. Let ¢ and ¢, represent a dimensional quantity
and its reference value, respectively; its normalization is given by g = ¢/¢,. We select the reference values
for the stress, strain, electric induction, and the electric fields to be go = 10° (N/mz), =107 Dy=10"2
(C/m?), and Ey = 107 (V/m), respectively. Also select the reference value of the phase velocity to be vy = 10*
(m/sec). The reference values of other quantities are determined in terms of these five reference variables
such that the normalized governing equations remain exactly the same form as the original equations.
For example, the reference value of the density is given by po = 10* (kg/m?). Table 1 lists other reference
values for the material constants and field variables in piezoelectricity used in this paper, where x, (m) is
the characteristic length of the problem.

5. Eigenvalue analysis

5.1. Controlling parameter in eigenvalue analysis

As seen from (34), the fundamental solutions depend on a non-dimensional parameter
Km = kmr7 (70)

where r = |y — x| and k,,,(m = 1,2,3) is the wave number defined by (23). Let k,, v,, and 7 be the normalized
wave number, phase velocity and distance, respectively, defined by
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Fo = Xokpy Tn =2 F=—. (71)
Vo X0
We can rewrite (70) as
Km =kt = kT, (72)
where
- »
ky = o (73)

is the normalized wave number which, along with v,,, varies over the unit circle |n| = 1. Since the value of v,
is of the order of 1, we can replace (73) by

ki ~ @ (74)
so that (72) is given by
K ~ OF (75)

for m=1,2,3. Thus we use @ as the controlling parameter in the eigenvalue analysis. The actual radial
frequency is given by

Vo _
w=—an.

(76)

X0

5.2. Basic equations

The direct formulation relates the generalized boundary displacement ({U}) and traction ({T}) by a
system of boundary integral equations

[H(@){U} - [G(@){T} = {0}, (77)
where [H(®)] and [G(®)] are square matrices of dimension N. Given a homogeneous boundary condition
we select a vector {R} of dimension N consisting of nonzero components of the boundary quantities; it may
consists entirely of the generalized displacement or traction components or a mixture of both. Rearrange
the columns of [H(®)] and [G(®)] that correspond to the nonzero components into a single square matrix
[Q(®)] of dimension N to get the updated system of boundary integral equations

[Q(@){R} = {0}. (78)
The matrix [Q(®)] is complex valued, nonsymmetric and its components are non-linear functions of the
angular frequency @. Determination of pairs of @ (eigenvalue) and nonzero {R} (eigen vector) is the goal
of the eigenvalue analysis. The direct search method (Kitahara, 1985) calculates det[Q(®)] at multiple
sequential values of @ in a given interval. The accuracy of this method is strongly influenced by the incre-
ment size A®. The true zero points of the determinant are never achieved numerically; instead, eigen fre-
quencies obtained correspond to the local minima. Furthermore, the direct search method has a
difficulty in computing multiple or clustered eigenvalues.
We approximate [Q(®)] in a given interval [@,4, @] by a matrix polynomial of order M; the approximate
eigenvalue problem is given by

[Qo] + @[Qi] + @*[Qo] + -+ + @ [QuJ|{R} = {0}, (79)

where [Qo],[Q1], . . .,[Qa/] are square coefficient matrices of dimension N determined by Newton’s divided
differences. Introduce a series of vectors, {R;} = @'{R} (i =0,1,...,M), to rewrite (79) as



M. Denda et al. | International Journal of Solids and Structures 41 (2004) 7241-7265 7255

[Qul{Ro} + [Qu{R:} + [QuJ{Ro} + -+ + [Qy]{Ry} = {0}. (80)
Eq. (80) is equivalent to a linear general eigenvalue problem
[QHR'} = o[P'{R'}, (81)
where [Q*] and [P*] are square matrices of dimension MN and {R"} is a vector of dimension MN defined by
[[Qu] [Qua] -+ Q] Q1] Qo] [—[Qu] [0 [0] 0] [0]7
[ o - (0] [0 [0 (0 [ [o] [0] [0]
Q] = [0] LI (U Y = (0 [o] [ (0] [0] 7
[0] [0] o [o] [0 0] [0] [0] o [o]
L [0] [0] 0 @ o] L (0] [0} [0] (0] [1]
@M*l{i}
@M*Z{g}
ry- 7R (52)
o{R}
{R}

where [I] and [0] are the identity and zero matrices of dimension N.
5.3. Eigen solvers

5.3.1. QZ algorithm

For solids of general anisotropy, Denda et al. (2003) have reduced the non-linear eigenvalue problem
(78) to the generalized linear eigenvalue problem (81) and solved the latter by the QZ algorithm. Let N
be the number of degrees of freedom of the problem, which is four times the number of nodes in piezo-
electricity. The QZ algorithm using the Mth order polynomial approximation (79) of the determinant in
the interval (@, wg) deals with NM x NM square matrices [Q*] and [P*]in (82) to produce NM eigenvalues.
While we seek for real eigenvalues in this interval, the majority of the eigenvalues are either complex valued
or real but out of this interval, and they are called spurious. We look for eigenvalues @ with small imag-
inary parts that satisfy the condition,

|S[@]] < em R[], (83)

where the R indicates the real part of a complex variable and ¢;,, is the tolerance for the imaginary parts of
the eigenvalues specified a priori. The rest of the eigenvalues have large imaginary parts and have to be re-
jected as spurious. Even among those with small imaginary parts, some still have to be rejected as spurious
if their real parts are outside the sub-interval (@, @z). These eigenvalues belong to the adjacent sub-inter-
vals, where their values are determined more accurately than in the current sub-interval. This brings up the
second condition

o4 < R[@] < @3 (84)

for the selection of the eigenvalues. Although a higher value of M in (79) allows a larger interval of @ con-
taining more eigenvalues, it inflates the size of Q”. A better strategy is to use a low value such as M = 1 for a
small interval containing a small number of eigenvalues. The latter strategy requires more intervals, but
computation for each interval is much faster than the former due to the small size of the matrices. Even
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with this better strategy, the typical ratio of non-spurious to spurious eigenvalues is 1 to N, which is an
enormous waste despite the high accuracy of the algorithm.

5.3.2. IRAM

The implicitly restarted Arnoldi method (IRAM) (Lehoucq et al., 1998) eliminates this waste and pro-
vides an accurate and dramatically faster eigen solver than the QZ algorithm. We select M =1 in (79) to
give the linear approximation of (78) in @ € (@y, @wg). This sets the generalized eigenvalue problem,

[A{R} = @[BJ{R}, (85)

where [A]=[Qo] and [B] = —[Q;]. With the IRAM, we seek the real valued eigenvalues of (85) in the inter-
val [@4, @p]. Besides matrices [A] and [B], the IRAM input consists of (a) real numbers @4 and @3, (b) the
number k of eigenvalues in this interval, and (c) a small tolerance limit ¢, for the imaginary part of the
eigenvalues. This is a variation of the standard IRAM input that consists of a complex number 7 and k;
the IRAM will find k eigenvalues closest to 7. We apply the shift and invert spectrum transformation
to convert (85) to the standard eigenvalue problem

[CI{R} = &{R}, (86)
where

€] = (A] —#B) '[B], =1 (87)
and

T w (88)

To find the k eigenvalues @, (i = 1,...,k) near T the IRAM obtains the eigenvalues fi; of the standard
eigenvalue problem with & largest magnitudes and convert them to @; using the relation

1

o =T+ T (89)
In general the resulting eigenvalues are complex valued and we select eigenvalues that satisfy conditions
(83) and (84). The IRAM is designed to compute the specified number (i.e., k) of eigenvalues. Since the ac-
tual number of eigenvalues in the given interval is unknown, there is a chance to underestimate this number.
A crude but reliable way to resolve this problem is to start solving the eigenvalue problems with an initial
guess of k =k and continue to double the number k until

Ad

lI:I}an | — 7| > - (90)

is satisfied, where A = @g — @, .
5.4. Numerical results

We have analyzed a square domain for quartz using a homogeneous mesh with 24 elements and 48
nodes. The quartz belongs to the symmetry class of Trigonal 32. Its stiffness constants are ¢;; = 8.674,
¢33 =10.72, c4q = 5.794, ¢15 = 0.699, ;5 = 1.191, ¢4 = —1.791, in the unit of 10'® N/m?. The piezoelectric
stress constants are e,; = 0.171, e,y = —0.0436, in the unit of C/m> The relative permittivity constants in
constant strain are e,./eo = 4.5, €./ = 4.6, where ¢, = 8.854 x 10~'? farads/m. The search range consid-
ered is 0.0 < @ < 6.0. Exploiting the double symmetry of the integrands, the numerical integration (69) is
performed over the half-circle, which is divided into nine sub-intervals, with eight points Gauss quadrature
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in each sub-interval. The number 7 of sub-division for the half-circle is determined to accommodate the
oscillatory behavior of the integrands properly. Denda et al. (2003) has set up the guideline

n= Ky, (91)

which is obtained by setting the sub-interval size to be the smallest half-wave length of the oscillation. They
have also performed an extensive study to establish the optimum number of Gauss quadrature points as the
function of the parameter r,, using the case study on the isotropic anti-plane strain solution. Table 2 shows
the optimum number of Gauss quadrature points for the integration of the fundamental solution to achieve
relative error of the order of 10~". Table 2 is also used for the guideline of integration of the boundary ele-
ment coeflicients. We have used the same number of Gauss points for the real and imaginary parts of the
boundary element, which is slightly more conservative than the guideline set by Table 2.

We have divided the frequency range of 0.0 < @ < 6.0 into sub-ranges of size A = 0.05 and applied the
QZ-algorithm with M =1 and IRAM in each sub-range. For both methods, the criterion used to pick up
true eigen values among spurious eigenvalues is: (a) real part is in the search region and (b) the absolute
value of the imaginary part is less than 0.1, i.e., €, =0.1 in (86). Tables 3 and 4 list eigenvalues found
for the generalized displacement and traction zero BCs along with the FEM results. The FEM has used
25 36-nodes elements; the total number of nodes for the FEM calculation is 676. The FEM 36-nodes ele-
ment has 20 and 16 nodes on and inside the boundary, respectively; it covers the element uniformly by a
6 x 6 array of nodes. The FEM developed by Wang et al. (1999) has been used successfully for industrial

Table 2
Optimum selection of the number of quadrature points p (for imaginary part) and ¢ (for real part) of the Radon transformed
fundamental solution

Opt. # of quad. pts.

p q
0 < K,y < 10 5 7
0 < K, < 20 4 6
20 < Ky < 60 4 5
Table 3
Eigen frequencies @ for a square quartz domain with the generalized displacement zero BC
BEM-QZ BEM-IRAM FEM BEM-QZ BEM-IRAM FEM
2.0529163 2.0529163 2.0514446 4.4816256 4.4816256 4.4810207
2.1189051 2.1189051 2.1180479 4.5827853 4.5827853 4.5822244
2.1498585 2.1498585 2.1483615 4.9072713 4.9072713 4.9069360
2.7197398 2.7197398 2.7190529 5.0008150 5.0008150 5.0006463
2.9091266 2.9091266 2.9086841 5.2107294 5.2107294 5.2105290
2.9933909 2.9933909 2.9929622 5.2820195 5.2820195 5.2815447
3.5102774 3.5102774 3.5098855 5.3344032 5.3344032 5.3337498
3.5875497 3.5875497 3.5870780 5.3533056 5.3533056 5.3525324
3.6594485 3.6594485 3.6584456 5.4194479 5.4194479 5.4189722
3.7260255 3.7260255 3.7252852 5.5040931 5.5040931 5.5041806
3.8743249 3.8743249 3.8733734 5.6881460 5.6881460 5.6877681
3.9318375 3.9318375 3.9310687 5.7180436 5.7180436 5.7176508
4.1998843 4.1998843 4.1997178 5.7355393 5.7355393 5.7348085
4.3665248 4.3665248 4.3657533 5.7823143 5.7823143 5.7819670
4.4397478 4.4397478 4.4390138 5.9562269 5.9562269 5.9555229

4.5041277 4.5041277 4.5040515
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Table 4

Eigen frequencies @ for a square quartz domain with the generalized traction zero BC

BEM-QZ BEM-IRAM FEM BEM-QZ BEM-IRAM FEM
1.2145088 1.2145088 1.2089318 4.0388115 4.0388115 4.0335227
1.2623694 1.2623694 1.2564972 4.1978734 4.1978734 4.1938836
1.3975235 1.3975235 1.3932688 4.2891775 4.2891775 4.2882931
1.4318070 1.4318070 1.4300950 4.2916230 4.2916230 4.2884494
1.6934463 1.6934463 1.6961658 4.4681351 4.4681351 4.4621603
1.7361775 1.7361775 1.7377406 4.5325955 4.5325955 4.5261763
1.8395258 1.8395258 1.8397334 4.6471505 4.6471505 4.6362019
1.8926617 1.8926617 1.8958074 4.6811296 4.6811296 4.6747030
2.0610223 2.0610223 2.0610462 4.6998141 4.6998141 4.6848519
2.1071104 2.1071104 2.1069953 4.7625681 4.7625681 4.7523645
2.3897206 2.3897206 2.3894016 4.9125699 4.9125699 4.9110275
2.5082646 2.5082646 2.5001538 5.0412813 5.0412813 5.0338686
2.6151741 2.6151741 2.6107793 5.0793905 5.0793905 5.0683058
2.7759226 2.7759226 2.7701186 5.1708429 5.1708429 5.1653612
2.8057726 2.8057726 2.8020482 5.2872916 5.2872916 5.2788529
2.8969799 2.8969799 2.8936377 5.3330519 5.3330519 5.3220680
3.0407019 3.0407019 3.0358119 5.3749176 5.3749176 5.3699159
3.1717542 3.1717542 3.1676350 5.4225762 5.4225762 5.4079553
3.2724588 3.2724588 3.2686295 5.4463162 5.4463162 5.4389057
3.3188196 3.3188196 3.3192521 5.5411958 5.5411958 5.5381640
3.5145123 3.5145123 3.5116109 5.5535319 5.5535319 5.5440511
3.6335017 3.6335017 3.6272374 5.5680067 5.5680067 5.5618751
3.7235163 3.7235163 3.7236162 5.6580242 5.6580242 5.6591871
3.7326404 3.7326404 3.7322540 5.6843472 5.6843472 5.6726727
3.7726525 3.7726525 3.7751680 5.7623050 5.7623050 5.7609424
3.8056663 3.8056663 3.7996832 5.8112034 5.8112034 5.8017309
3.8087235 3.8087235 3.8130757 5.8777669 5.8777669 5.8743026
3.9955690 3.9955690 3.9843044 5.9436785 5.9436785 5.9164630
4.0283721 4.0283721 4.0203054 5.9829256 5.9829256 5.9633065

applications primarily in the frequency range @ < 1. In the frequency range 0.0 < @® < 6.0 the BEM and
FEM results agree up to 3 digits for displacement and traction zero BCs. The accuracy of the FEM tends
to deteriorate in the high frequency range as reported by Denda et al. (2003) for the general anisotropic
solids. As more higher frequency applications appear, such as the SAW using diamond, the importance
of the higher frequency capability of the BEM should stand out. the The typical CPU times for QZ-algo-
rithm and the IRAM on a PC with a 1 GHz processor are 95.8 and 11.5 s to obtain eigenvalues in one sub-
interval; the time to calculate the boundary element coefficients is not included. Notice that the results by
QZ-algorithm and IRAM perfectly agree up to 8 significant digits (and more) and that the IRAM is
approximately 10 times faster than the QZ-algorithm. In general the time is dependent on many factors
other than the algorithm such as the OS, compiler, and the optimization option.

6. Convergence study
6.1. Modified IRAM
Although the eigenvalues calculated in Section 5 were in agreement with the most reliable FEM results

up to a few to several significant digits, further study on the effects of the sub-interval size A@® and the num-
ber N of the boundary elements upon the threshold size ¢;,, for the acceptable imaginary parts for the true
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eigenvalues is needed. To examine the effects, we will catalogue the imaginary parts of the true eigenvalues
obtained numerically as we change the sub-interval size Aw and the number N of the boundary elements.
We call this as the convergence study of the imaginary parts of the true eigenvalues. Note that, when we
compute the eigen frequencies without the help of the FEM, it is difficult to get reliable results without
performing the convergence study.

(a) (b) (c)
[S[w]l/R[w] [S[w]l/R[w] Sl l/R[w]
A !

,,,,,,,,,,,,,,,,,,,,

R R R e S A R R € |ESSRR - poeteTooe G [ e

R[] o R[] Q0 R

Fig. 1. (a) Selection of eigenvalues on a complex plane for the ith sub-interval. The gray rectangle indicates the region specified by (84)
and (92). The black and white circles indicate the accepted and rejected eigenvalues. (b) The right boundary for the ith sub-interval.
(c) The left boundary for the i + Ith sub-interval.

Table 5

Real and imaginary parts of the eigenvalues for the square domain model computed with Ny = 64, A® = 0.1, M =1, and d;,, = 0.05
R[A] J[4] R[4 J[4] R[4 J[4 R[4 3[4
2.05292 2.830e—3 5.68830 1.071e-3 7.53536 2.543e—3 9.05154 2.947e—3
2.11892 1.618e—3 5.71820 1.379¢-3 7.60088 9.277e-5 9.06752 2.406e—3
2.14986 2.494e-3 5.73560 1.972e-3 7.65282 2.282¢—3 9.07451 2.470e—-3
2.71975 2.038¢—3 5.78261 1.567e—3 7.71703 1.252e-3 9.12078 1.623e—3
2.90915 9.513e—4 5.95643 2.695¢—3 7.72733 2.056e—3 9.13638 2.689¢—3
2.99341 7.106e—4 6.09086 1.087e—3 7.77308 2.400e—3 9.18816 1.148e—3
3.51031 9.345¢—4 6.10139 1.456e—4 7.86306 2.294e—-3 9.36192 2.573e—3
3.58758 1.482e—3 6.16991 2.120e—3 7.92221 1.815¢e—3 9.37778 1.874e-3
3.65947 3.051e—3 6.22949 2.293¢-3 7.92962 2.172¢-3 9.39464 5.572¢—4
3.72604 1.725¢—3 6.37199 2.382¢—3 8.04843 2.756e—3 9.48977 1.050e—3
3.87435 2.094e—-3 6.39276 6.008¢—4 8.08537 1.338e—3 9.49117 7.843¢—4
3.93186 1.966e—3 6.48008 1.818e—3 8.11265 1.407e—-3 9.50921 1.236e—3
4.19992 8.162¢e—6 6.48027 2.270e—-3 8.25626 2.560e—3 9.52905 1.983e—-3
4.36661 2.079¢—3 6.59655 3.400e—4 8.29071 1.074e—-3 9.55904 2.396e—3
4.43984 2.540e—3 6.86556 2.690e—3 8.33414 2.491e-3 9.60967 7.986e—4
4.48169 1.844e-3 6.88634 1.448e—3 8.34673 2.706e—3 9.69842 1.742e—4
4.50420 5.506e—4 6.90337 3.183e—4 8.47931 1.545¢e—-3 9.76343 2.173e-3
4.58285 1.821e-3 6.91427 1.472e-3 8.49230 1.042e—3 9.79095 9.040e—4
4.90737 6.703e—4 6.94453 2.522e—-3 8.56703 2.287e—-3 9.79107 7.539e—4
5.00089 9.265¢—5 7.04648 2.475¢-3 8.59440 6.025¢—4 9.85253 2.644e—3
5.21084 1.048e—3 7.08791 1.201e-3 8.60539 5.057e—4 9.90965 1.014e-3
5.28213 1.816e—3 7.28115 1.394e-3 8.63658 2.631e—3 9.92088 2.007e—3
5.33454 2.833e—3 7.29578 4.648¢—4 8.75728 2.566e—3 9.92699 2.218e-3
5.35337 2.547e-3 7.35237 3.038¢—3 8.86159 2.453¢-3 9.99634 3.537e—4
5.41957 1.531e-3 7.38493 1.243e-3 8.95640 2.549¢-3

5.50425 5.829¢—4 7.48706 1.682¢—3 8.99250 6.750e—4
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Table 6
Real and imaginary parts of the eigenvalues for the rectangular domain model computed with Ny = 64, Aw = 0.01, M =1, and
Oim = 0.05

R | 3[4 | R[4 | S | R | S | R[4 | S |
0.61837 4.314e-5 0.93175 6.137e—5 1.09844 8.357e—5 1.29186 6.986e—5
0.62311 6.298¢—5 0.93982 9.309¢e—6 1.09915 1.950e—5 1.30131 7.523e—3
0.63635 6.711e—5 0.94224 3.832e—5 1.10734 7.066e—5 1.30156 1.202e—4
0.65153 3.824e—5 0.94363 4.332e—5 1.12087 2.070e—5 1.31410 1.519e—4
0.67174 4.570e—5 0.94777 3.775e-5 1.13539 7.890e—5 1.31765 2.245¢—4
0.68062 2.177e=5 0.94997 2.555¢e—6 1.14148 8.147e—5 1.32577 2.645¢e—4
0.68288 5.608e—5 0.95493 4.84le-5 1.14678 6.454e—5 1.32859 2.990e—3
0.69248 5.057e—5 0.95935 1.560e—5 1.15985 4.254e—-5 1.33032 3.838¢—4
0.69429 7.559%e—-5 0.96754 3.961e-5 1.17777 5.673e—5 1.34156 8.111e—4
0.70246 4.791e-5 0.97221 7.472e-5 1.18366 8.84le—5 1.35035 1.215¢e—4
0.71644 6.233e—5 0.97350 7.465e—5 1.18456 1.691e—4 1.35665 2.919¢—4
0.72221 5.855¢—5 0.97413 4.594e—5 1.20518 7.789e—4 1.35716 1.410e—4
0.73167 4.030e—-5 0.98401 4.775¢—5 1.21014 9.568e—4 1.35752 1.589¢—4
0.75092 2.998e—5 0.99366 4.403e—5 1.21684 1.064e—3 1.36429 1.673e—4
0.75169 4.313e-5 1.00535 4.865¢—5 1.22807 1.086e—4 1.36553 3.646e—4
0.77191 4.515e—5 1.00762 6.158e—5 1.22939 6.074e—5 1.37686 1.309¢e—4
0.78352 7.775e—5 1.01371 1.116e—4 1.23419 3.237e—4 1.37870 4.286e—4
0.79568 7.104e—5 1.01759 3.694e—5 1.24850 1.862e—4 1.38290 2.683e—4
0.81790 5.942e-5 1.03129 2.384e—5 1.25012 1.193e—4 1.38387 2.243e—4
0.82098 2.719e-5 1.04213 6.115¢e—-5 1.25389 1.147e—4 1.38525 3.442¢—4
0.84857 3.997e-5 1.04615 4.769¢—5 1.25611 7.990e—4 1.38941 6.696e—2
0.85449 9.325¢-5 1.05591 1.283e—4 1.27084 8.984e—5 1.39868 5.563e—5
0.87744 6.054e—5 1.06260 4.083e—-5 1.27739 1.461e—4

0.89226 6.894e—5 1.07587 7.635¢e—5 1.28155 2.719¢e—4

0.90816 4.969¢—5 1.07985 5.827e—6 1.28667 2.639e-3

To perform the convergence study using the IRAM, we propose its modified version, where we select a
much looser threshold value 9, for the imaginary part of the complex eigenvalues than ¢, in (83). This
way, we extend the search region from the sub-interval (@4, @z) on the real axis to a rectangular region with
the vertical extent

|3[@]] < 0im R[] (92)
Also we replace the condition (90) with

max|@; — 7| > R (93)

i=

where R is the extended search radius defined by

R= \/ (@)2 + (5 R[], (94)

which is the radius of a circle centered at the midpoint 7 of the sub-interval [@,, @;]. Fig. 1(a) schematically
illustrates condition (93) together with conditions (92) (or (83)). The condition (93) effectively tells that all
eigenvalues within the extended search radius R from the center of the interval have been picked up. Note
that the threshold value 6,,, is deliberately chosen to be much larger than ¢, to pick up eigenvalues with
larger imaginary parts than used in Section 5.3.2. Such eigenvalues are necessary to examine the behavior
of the imaginary parts of the eigenvalues in the current convergence study.
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Another problem we have encountered in Section 5.3.2 is the possibility of missing eigenvalues that are
on or very close to the boundary between two adjacent intervals. As shown in Fig. 1(b) and (c), such eigen-
values may be missed by both the current and the adjacent intervals. One way to avoid this is to move the
boundary and compute the eigenvalues for the new sub-intervals all over again. Another way is to replace

(84) with
B4 — ere <R[@] < (95)

where a positive real number €, is the tolerance specified prior to the analysis. Although this may yield
redundant eigenvalues in two adjacent sub-intervals, the redundant eigenvalues can be removed by check-
ing the orthogonality of eigenvectors.

Wp + €re,

6.2. Numerical study on the imaginary parts of the eigenvalues

We have applied the modified IRAM Algorithm of Section 6.1 for the determination of eigen frequencies
of two quartz plates: a square quartz domain and a rectangular AT-cut quartz domain with the aspect ratio
1/15. The non-dimensional eigen frequencies @ obtained for the square plate here can be used to calculate
the actual eigen frequencies of any square quartz plates of edge length xq by the formula w = (vo/x¢)®,
where vo = 10* m/s is the reference phase velocity. Similarly, @ obtained here for the rectangular AT-cut
quartz plate gives the eigen frequencies of any rectangular AT-cut quartz plates with the aspect ratio
1/15 and the short edge length x, by the formula w = 2(vy/xo)@®
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Fig. 2. Real part and normalized imaginary part of the eigenvalues for the square domain model computed with Nz = 64 and

A® = 0.1,0.2,0.4,0.8.
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We have used the uniform mesh for locating boundary nodes in both plates. Let the number of boundary
elements in each plate be Ng, then the number of nodes is 2Nz and the DOF 8Ng. Zero generalized dis-
placement boundary condition is considered for both plates. The ranges of the non-dimensional eigenfre-
quency @ sought are [0,10] and [0, 1.4] for the square and rectangular plates, respectively. We have used the
linear function (M = 1) in the piecewise polynomial approximation. The parameters in the modified IRAM
Algorithm are set as, ko = 10 and §;,, = 0.05.

The results of the convergence study are summarized in Tables 5 and 6 and Figs. 2-5. Tables 5 and 6
enlist only the most accurate results for the square quartz (Nz = 64 and A® = 0.1) and rectangular AT-
cut quartz (Ng = 64 and Aw = 0.01) plates, obtained from the finest boundary element mesh and the small-
est sub-interval size for each plate. The wide variation on the range of their imaginary parts observed in
Figs. 2-5 are the results of allowing relatively tolerant threshold value o,,, for the imaginary part, which
was deliberately set up for the convergence study.

Fig. 2 depicts the eigenvalues of the square quartz plate for different values of A®w = 0.1,0.2,0.4, and 0.8
at the fixed number Nz = 64 of the boundary elements: the absolute values of the normalized imaginary
parts of the true eigenvalues are presented by the (a) normal and (b) logarithmic plots. These plots show
that the imaginary parts of the eigenvalues become small as A@ decreases at a fixed number of the boundary
elements.

Fig. 3 illustrates the results of the square quartz plate by changing the number of elements (N = 64, 32,
16, and 8) at a fixed interval A = 0.1. An interesting discovery from these plots is the phenomenon of the
sudden bursts in the magnitude of the imaginary part at higher frequencies. Each burst is followed by the

+ Ny=64 O 32 x 16 V 8

5)(10
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v v o
= 3r v v,
>~
B
o
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=
—
B
o
s
<

Fig. 3. Real part and normalized imaginary part of the eigenvalues for the square domain model computed with N = 64,32,16,8 and
Ao =0.1.



M. Denda et al. | International Journal of Solids and Structures 41 (2004) 7241-7265 7263

+ Aw=0.01 O 0.02 % 0.04 V0.08

- x 10
[’}
+
(a) v
4t v .
13 v
= 3[ 7
~
[E. i
o 2
L i
0
-1
(b) 4 v
= 2L
13 Vv W \vavd S v
= MM AL v ¥ Yv \§7 87
Z % x Vg Vax % % xVY x
5 O L *x x % xvvx XVXXX x o
o X0 0Xp %0 © 0% @ x00 0758 *x® *xo x o ﬁ@
g: 4 7&3 io% ii + O+ @ ‘60@+OO 2 XQS) C% +% §OQ+ fok §7
5 + +*§+ ++ §+++ ML+¢ 47t o*@g oty q
= Q* g Tt |
+
—6 I I I
0.6 0.8 1.0 1.2 1.4
R[]

Fig. 4. Real part and normalized imaginary part of the eigenvalues for the rectangular domain model computed with Nz = 64 and
Ao = 0.01,0.02,0.04,0.08.

temporal recovery back to the low value of the imaginary part. The value of the eigen frequency at the
initial occurrence of this burst becomes higher as Ny increases. This suggests that observing the imaginary
part provides us with the basis to determine how many boundary elements are necessary to get the eigen
frequencies having required level of accuracy in the given frequency range.

The final observation is on the sensitivity of the eigenvalues. If the true eigenvalues closely clustered near
the real axis are well separated from the spurious eigenvalues that have large imaginary parts, then the solu-
tion is insensitive to the value of ¢;,, used in (83). We observe that the eigenvalues become more sensitive
to €;, as Aw increases or N decreases since the distribution of the eigenvalues under these circumstances
becomes more scattered away from the real axis.

The results for the rectangular plate are shown in Figs. 4 and 5 with a fixed N =64 and variable
Aw = 0.01,0.02, and 0.04 and with a fixed A = 0.01 and variable N = 16, 32, and 64, respectively.
The results shown in these figures confirm the observation made for the square plate results.

7. Conclusions

We have developed a time-harmonic BEM for piezoelectric solids in 2-D using the fundamental solution
obtained by Radon transform. The boundary element coefficients are evaluated numerically by the single
line integral over the unit circle. We have applied the BEM to the eigenvalue analysis using the QZ algo-
rithm and the IRAM. The eigen frequency results by the two methods are virtually identical and are in
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Fig. 5. Real part and normalized imaginary part of the eigenvalues for the rectangular domain model computed with N = 64,32,16
and Ao = 0.01.

agreement with the FEM results up to a few significant digits. The IRAM is approximately 10 times faster
than the QZ-algorithm. We have also presented a framework for the convergence study. We have examined
how the values of the imaginary parts of the eigenvalues are influenced by the sub-interval size and by the
number of boundary elements. We have demonstrated that observing the imaginary part of the complex
eigenvalues in the convergence study provides us with a basis for reliable computation of eigen frequencies
by the time-harmonic BEM.

The proposed BEM implementation combined with the IRAM eigenvalue solver provides a reliable plat-
form for the computation of eigen frequencies for piezoelectric solids. It has a broader range of applications
to the time-harmonic problems beyond the eigenvalue analysis.
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